Snow cover is of key importance for water resources in high mountain Asia (HMA) and is expected to undergo extensive changes in a warming climate. Past studies have quantified snow cover changes with satellite products of relatively low spatial resolution (∼500 m) which are hindered by the steep topography of this mountain region. We derive snowlines from Sentinel-2 and Landsat 5, 7 and 8 images, which, thanks to their higher spatial resolution, are less sensitive to the local topography. We calculate the snow line altitude (SLA) and its seasonality for all glacierized catchments of HMA and link these patterns to climate variables corrected for topographic biases. As such, the snowline changes provide a clear proxy for climatic changes. Our results highlight a strong spatial variability in mean SLA and in its seasonal changes, including across mountain chains and between the monsoon-dominated and the westerlies-dominated catchments. Over the period 1999–2019, the western regions of HMA (Pamir, Karakoram, Western Himalaya) have undergone increased snow coverage, expressed as seasonal SLA decrease, in spring and summer. This change is opposed to a widespread increase in SLA in autumn across the region, and especially the southeastern regions of HMA (Nyainqentanglha, Hengduan Shan, South–East Himalaya). Our results indicate that the diversity of seasonal snow dynamics across the region is controlled not by temperature or precipitation directly but by the timing and partitioning of solid precipitation. Decadal snowline changes (1999–2009 vs 2009–2019) seasonally precede temperature changes, suggesting that seasonal temperature changes in the Karakoram–Pamir and Eastern Nyainqentanglha regions may have responded to snow cover changes, rather than driving them.