Abstract Key roles of marine dimethyl sulfoniopropionate (DMSP), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) in the sulfur cycle and/or atmospheric chemistry, alongside the rapid environmental changes in marine ecosystems, underscore the need to understand their responses to dynamic ecosystem shifts. We conducted two ship‐based incubation experiments in the Northwest Pacific and Eastern Indian Oceans to explore how dust deposition, ocean acidification, and microplastic exposure impact these compounds. Our results demonstrate that these stressors not only alter phytoplankton community but also modify per‐cell DMSP production capacity and DMSP degradation pathways, subsequently influencing DMSP, DMS, and MeSH concentrations. CS2’s response closely mirrors phytoplankton abundance and species. Initial physical‐chemical conditions, such as carbonate system and nutrient availability, may mediate the sensitivity of phytoplankton and sulfur compounds to environmental shifts. This study enhances our understanding of biogenic sulfur responses in dynamic marine ecosystems and provides essential basis for future climate modeling.

Read original article