Abstract The escalating plastic crisis can be mitigated by upgrading waste polyethylene terephthalate (PET). Leveraging the geographical advantages of offshores with established chlor-alkali industries, abundant renewable energy, and extensive seawater, we here present a technically and economically viable strategy of harnessing natural seawater as a medium to transform PET plastics into high-value chemicals. We report a nickel-molybdenum catalyst incorporating frustrated Lewis pairs for the efficient breakage of C─C bond and the oxidation of ethylene glycol, which sustains a current of 6 amperes at 1.74 volts over 350 hours, with a projected revenue of approximately $304 United States dollar (USD) per ton of processed PET plastics. In a customized electrolyzer, we successfully convert 301.0 grams of waste PET into 227.1 grams of p-phthalic acid (95.5% yield), 1486.2 grams of potassium diformate (67.2% yield), and approximately 214.9 liters of green hydrogen. This study paves the way for scalable PET upcycling, contributing to a circular economy and mitigating the plastic pollution crisis.