Abstract The Turkana Depression, located between the Ethiopian and East African plateaus, displays an anomalous rift architecture. It is missing the narrow, magma‐rich morphology observed in the Main Ethiopian Rift that cuts through the Ethiopian Plateau. Instead, diffuse faulting and isolated volcanic centers are widespread over several hundred kilometers. Turkana has also experienced less magmatism over the last 30 Myr than adjacent plateaus, despite having a thin crust and residing above a mantle that is inferred to be hot and partially molten. We hypothesize that lithospheric weakening has been the key control on magma transport across the lithosphere in the Turkana Depression and subsequent rift development. Using poro‐viscoelastic–viscoplastic models of melt transport, we show that magma extraction across a thin, weakened lithosphere is slower than across a thick, elastic lithosphere. Our results suggest that pre‐rift lithospheric strength can explain the magma‐poor character of Turkana for most of its tectonic history.

Read original article