Abstract Dawnside auroral polarization streams (DAPS) are fast eastward flows in the dawn convection cell of Earth’s ionosphere. With a steep flow gradient near the interface between Region 1 and 2 currents and a peak poleward of it, DAPS were suggested to be responsible for instabilities and dramatic events in the magnetosphere‐ionosphere (M‐I) system. To predict these events, it is important to investigate when and where DAPS prefer to occur and how they are related to other M‐I phenomena. We conduct this investigation statistically using 10 years of Swarm data and find that DAPS under sunlit and dark ionospheric conditions exhibit different dependencies on magnetic local times and geomagnetic activities, reflecting a complicated interplay between magnetotail dynamics and ionospheric conductance. The statistical results also reveal a strong correlation between DAPS and embedded Region 2 currents. These findings provide new insights into the DAPS generation mechanism.