Abstract Energetic particle deep penetration into low L‐shells (L < 4) impacts the dynamics of the radiation belts and ring current. Previous studies reported that electrons penetrate more frequently, deeply, and faster than protons of similar energies, but underlying mechanisms are unclear. In this study, we compare heavy‐ion behavior with electrons and protons to further identify the underlying mechanisms. Using Van Allen Probes data, we show that electron deep penetration occurs most frequently and deeply, followed by O+ ions, then He+ ions, and finally protons. Most particle deep penetrations occur within several hours. Superposed epoch analysis shows that prior to deep penetration, electrons have the steepest phase space density radial gradients, followed by heavy ions and then protons for the same μ and K. Our study suggests that a combination of two or more mechanisms, such as convection electric field and plasma wave‐induced scattering, may be needed to fully explain particle deep penetration.

Read original article