Abstract Tropical tropopause layer (TTL) cirrus clouds play a key role in the Earth climate system. Yet the relative role of the various processes shaping them remains poorly known. Characterizing the temporal evolution of cloudy structures from observations is essential to address this issue but represents a challenge. Indeed, space‐ and airborne platforms move fast and mainly provide instantaneous snapshots. In boreal winter 2021–2022, two balloon‐borne lidars flew over the Equatorial Pacific Ocean, slowly drifting above the clouds. We use those unique nighttime observations to quantify the distribution of TTL cloud lifetime above this homogeneous region. This distribution is strongly asymmetric: half of the clouds live less than 1 hr, but their mean lifetime is about 6 hr. The few long‐lived clouds (>12 ${ >} 12$ hr) dominate the cloud cover. Those results compare reasonably well with TTL cirrus lifetimes in the ERA5 reanalysis, although the modeled TTL cloud cover is largely underestimated.