Abstract A recent theory proposes that tropical depression (TD)‐type waves grow by flattening the mean meridional moisture gradient, consequently weakening the Hadley Cell through a poleward moisture flux. To evaluate this theory, we investigate the seasonality of TD‐type waves and their relation to the Hadley Cell in ERA5 and Coupled Model Intercomparison Project Phase 6 (CMIP6) models. On the basis of the theory, a Hadley Cell instability metric is defined whose variability is largely determined by the background meridional moisture gradient and the sensitivity of rainfall to moisture fluctuations. Results show that both TD‐type wave column moisture variance and eddy moisture fluxes peak when the Hadley Cell instability metric is a maximum. These conditions typically occur when the mean meridional precipitation gradient is strongest and the Hadley Cell is weak and narrow. CMIP6 models that exhibit higher Hadley Cell instability metric simulate stronger TD‐type wave activity in the Northern Hemisphere.