Abstract Convective overshooting significantly influences atmospheric material and energy cycles and can cause severe social impacts; nevertheless, aerosol effects on its microphysical structure and associated extreme weather remain unclear. Using a more accurate algorithm of detecting convective overshooting and 10 years of high‐resolution data, this paper investigated how aerosols affect convective overshooting, focusing on its long‐term patterns, three‐dimensional microphysical structure of precipitation such as particle size and concentration, as well as the relationship with extreme weather. Results show that convective overshooting occurred more frequently and intensely in the Maritime Continent, exhibiting a significant increasing trend. Aerosols exerted a stronger influence on convective overshooting during water vapor sufficient seasons, and polluted conditions produced larger but sparser raindrops, with raindrop diameters increasing by 1.2–1.76 times while concentration decreased by 20%. Moreover, aerosols enhanced convective overshooting impact on rain rates and lightning by 20% and 50%, respectively, nearly doubling the spatial influence area.

Read original article