Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed electromagnetic emissions in Earth’s magnetosphere and are widely considered to efficiently scatter relativistic electrons into bounce loss cones. However, their precise scattering effects remain highly debated due to limited energy coverage and coarse resolution of previous measurements. Here, we present high‐energy‐resolution measurements of EMIC‐induced relativistic electron precipitation from the Relativistic Electron and Proton Telescope integrated little experiment‐2 (REPTile‐2) onboard the Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat. A long duration >1 MeV electron precipitation event was measured by CIRBE/REPTile‐2 in both the northern and southern hemispheres on 25 April 2023. The energy versus L dispersions of these >1 MeV precipitating electrons show good agreement with minimum resonance energies of electrons interacting with He+ band EMIC waves at specific frequencies. These novel observations unveil the detailed scattering effect of EMIC waves and provide important clues regarding wave‐particle interaction processes near the equator.